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ABSTRACT 

Wave Function Collapse (WFC) is a greedy algorithm that introduces a new way to procedurally generate both 2D 
and 3D worlds. One of the big advantages of using WFC is the customizability available, because of the tile set 
input required and possibly additional constraints and options. 

In this paper, a clear and cut way to implement 2D Wave Function Collapse to generate game levels is documented 
and extended into 3D. Extending to 3D requires minimal changes to the algorithm. Multiple extra options to 
customize the result into a desired state are introduced.  Additional constraints are here used to generate an island 
level. The impact of each of these options and additional constraints on execution time is then measured and 
evaluated. 

From the experiments, it is concluded that while extra adjacency constraints increase execution time, they can be 
used for optimizations purposes as well. 

KEYWORDS 

Wave Function Collapse – Procedural Content/ Map Generation – Computer Games – Constraint Solving 
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INTRODUCTION 

Procedural Content Generation (PCG) offers game development teams the opportunity to spend fewer resources on 
content generation. PCG has been used to create all kinds of content ranging from sound to 3D models and quests 
[1] [2] [3].  It is getting more and more popular due to the growing size of games and the content within them. Using 
Procedural content generators requires an upfront cost to implement, but if implemented correctly can save huge 
amounts of development time and resources. PCG can be used both during development and runtime to provide a 
different experience each time a game is played [4] [5]. 

PCG has also been used for a long time in level design. Designing good levels is an iterative and resource-consuming 
process, therefore many developers decide to use PCG if possible. Many games like Minecraft, No Mans’s Sky, and 
the entire genre of Roguelikes draw their main appeal from their random world generation and the aspect of 
exploring the unknown. In games like these PCG contributes a lot towards the game’s replayability. [6] [7] [8] 

The Wave Function Collapse (from here on referred to as WFC) algorithm is a greedy, computational algorithm that 
is seeing more and more popularity due to its 
ease of use. It is loosely based on the wave 
function quantum mechanics, where a particle 
is in a superposition until it is observed. This 
means a particle can be in any possible state 
until it is observed. [9] 

In WFC this is represented by initializing the 
level as a grid filled with cells, wherein each cell 
can be any possible state from a list of input 
tiles. The algorithm goes through the list each 
iteration finding the cell with the lowest 
entropy. Entropy represents the amount of 
chaos within a cell, which is represented by its 
number of possible states. Once this cell has 
been found it gets observed, causing it to 
collapse to its final state/tile. This information is 
then propagated to the neighboring cells, where 
the possible states of those cells are then 
updated based on adjacency constraints and 
propagated, and so on. These adjacency 
constraints are conditions for possible states to align and there can be as many added on top of each other as desired. 
Once all cells have been notified of the changes, the algorithm moves on to the next iteration and keeps iterating 
until all cells have collapsed, giving us our result. [9] [10] [11] 

The Wave Function Collapse algorithm is greedy. WFC looks for local possible and well-fitting solutions, instead of 
considering the entire map. It also does not reconsider made decisions at any time, leading to possible failure states. 
[12] 

This paper will investigate the WFC and how it can create 2D and 3D levels based on input tiles. First, a 2D version of 
the algorithm will be implemented and it will then be investigated how this implementation can be adapted to work 
for 3D levels. Afterward, additional adjacency constraints will be added to the 3D algorithm and their impact on the 
overall performance will be calculated. 

Figure 1: Flowchart representation of WFC 
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This is the research question this paper will focus on: 

• What are the necessary modifications to the 2D wave function collapse algorithm to 3D space and what 
is the impact of adding extra adjacency constraints? 

 

RELATED WORK 

Procedural Content Generation (PCG) focuses on the use of algorithms and software to automatically generate game 
content. It aims to create high-quality content for games, without the need for developers or artists to manually 
create it. PCG makes it a great toolset to reduce the time and resources spent on content generation.  However, it 
comes with an upfront cost to implement and requires a strong understanding of game design, data structures, and 
algorithms. If one would use machine learning for PCG, large datasets would also be required. 

 

PCG has multiple types of applications in games, like level 
creation, character creation, and quest generation. This 
also means that it can be used by teams in different 
scenarios. In Elite (1984), PCG was used to dynamically 
generate levels to create huge universes for the player to 
explore, without using too much memory. It is often used 
to generate 3D levels at runtime, offering more game 
replayability. It can also be combined with AI systems to 
create a dynamic difficulty system, making it change game 
parameters based on the detected skill level of the player. 
[13] [14] [15] 

 

One of the main challenges of PCG is not just creating the 
system but retaining some form of control of it. It is easy 
to generate a 3D level, but the difficulty lies in making sure the level fits the game.  This is where Wave Function 
Collapse (WFC) comes into play. WFC uses tiles as input, meaning that tiles can easily be enabled or disabled to fit a 
game/ level design choice. It is also possible to add constraints to the model, further enabling customizability (e.g., a 
sand tile cannot be directly connected to a stone tile). [16] 

  

Figure 2: Screenshot of Elite (1984) 
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1.  MAXIM GUMIN 

WFC was originally invented by Maxim Gumin, who created it as an algorithm for texture synthesis. The way his 
original algorithm worked was: 

1. Read the sample texture and count the detected patterns. 
2. Create the output pixel array for the texture and initialize it with all the patterns and booleans representing 

whether a pattern has been discarded yet. 
3. Collapse the wave, by repeating the following steps. 

a. Observation: Find the wave element with the lowest entropy (if none was found, break the cycle 
as this means the wave has fully collapsed). Collapse this element based on the patterns that have 
not been discarded yet. 

b. Propagation: relay the info of the collapsed wave element to its neighbors. Discard patterns that 
can no longer fit and propagate this info to those neighboring cells. Repeat this until all cells that 
need to discard patterns have done so. 

4. The wave should now either be fully observed, which gives a correct output image, or end in a contradictory 
state. In the first case return the output pixel array, in the second case return nothing. 

 

Figure 3: Gumin’s implementation of WFC for texture synthesis 

He then also introduced a ‘Simple Tiled Version’ in which the algorithm does not recognize patterns itself but uses 
input tiled patterns. The biggest change this has on the algorithm is that the propagation stage now is adjacency 
constraint propagation. This means that the algorithm needs predefined rulesets to detect whether tiles can fit 
together or not, an example could be edge color detection. The implementation of this paper will be based on 
Gumin’s Simple Tiled Model [17]. 
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Figure 4: An example of Gumin’s Simple Tiled Model of WFC 
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2.  OSKAR STÅLBERG 

2.1.  2D 

When people discuss WFC, Oskar Stålberg is often mentioned. Stålberg is known for his “Wave” demo, which 
showcases how 2D WFC works when generating a 2D image. This demo showcases how the algorithm thinks and 
uses color detection to see if tiles can fit next to each other. This is also the implementation that this paper’s 2D 
implementation is based on [18]. 

 

Figure 5: Wave by Oskar Stålberg 

 

2.2.  3D 

Stålberg also expanded WFC to work in 3D spaces and showcases this in the games Bad North and Townscaper. 
These games contributed vastly towards WFC and made it more known. He also proposed the idea of calculating 
the adjacency constraint when importing the 3d tiles from the modeling software to the game engine. The edges 
on all faces are scanned and compared to the other tiles to know which can fit together. The implementation this 
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paper provides is also based on this principle.

 

Figure 6: Screenshot of Bad North from the steam page, showcasing a WFC-generated island. 

 

3.  BORIS THE BRAVE 

When people talk about Tiles 3D Wave Function Collapse, Boris the Brave is often mentioned. He created Tessera 
[19], a Unity add-on that procedurally generates 3D levels using Wave Function Collapse. He is also the creator of 
DeBroglie [20], a C# library and command line program that generates 2D tile maps using WFC.  On this page [21] he 
gives a lot of advice on implementing and testing WFC and possible constraints to add. 

WEIGHTED ENTROPY 

Boris explains that the process of picking a cell is of great importance. Choosing the cell with the least entropy is 
preferred as it minimizes risks later. If the algorithm would wait too long with collapsing some cells, the algorithm 
could run into a contradiction.   

For calculating the entropy there are two options. If all tiles have an equal chance of being collapsed into, it suffices 
to use the number of remaining modules as the entropy value. If some tiles have a bigger chance of being chosen 
than others, we need to sum over all the remaining modules and choose the cell that minimizes:  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  −Σ𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖) 

In this formula, pi represents the probability of a module within the current cell. We sum all these and take the inverse 
as the entropy for the current cell. [22] 
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TILE SHAPE 

Tiles in WFC don’t necessarily have to be square (2D) or cubes (3D). Boris mentions 
that it is possible to use WFC with hex grids or more unusual surfaces. One possible 
example of an unusual surface is a sphere. 

 

He also notes that a practical extra constraint would be to allow some tiles to span 
across multiple tiles. This is because WFC doesn’t usually generate large structures 
by itself, making large maps look automatically generated. Balancing normal WFC 
and forced big structures can clean up the look of a level. [22] 

FIXED TILES 

Being sure of certain tiles when generating a map is often desired. This might be needed for fixed-level entry and exit 
points, drawing boundaries, or letting WFC fill in a pre-designed level.  Fixed tiles are added before the algorithm 
starts collapsing the wave. [21] 

 

Figure 8: Level with fixed tiles 

  

Figure 7: Example of a WFC 
generated sphere map. 
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PATH CONSTRAINT 

When generating rooms or very densely populated areas it is very valuable to add a path constraint. This constraint 
forces the algorithm to look for a path connection between 2 points on the map. For example, when generating 
rooms, it can add doors so rooms are connected and for generating wood it can create a nice walkable path. [21] 

 

Figure 9: Generated level without path constraint (left) and one generated with (right) 
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4.  MARIAN 42 

Marian 42 created an infinite procedurally generated world using 3D Wave Function Collapse. When walking through 
the level, new chunks are generated at runtime. To be able to do this he added multiple extra constraints. [23]

 

Figure 10: Top-down view of a chunk by Marian42 

SPECIAL TILES 

Marian 42 added two special tiles to their tile set. He added an empty tile and a solid tile. The empty tile would be 
added whenever the algorithm would need to place a block of air and a solid tile for occluded tiles. 

BOUNDARY CONSTRAINTS 

The behavior of WFC at the edge of maps is not clearly defined. If left untouched it could end up with holes in the 
floor or missing roofs at the top of the map. Boundary constraints can prevent these unwanted behaviors.  The two 
boundary constraints Marian42 added, were assuring all the faces at the top of the map have an empty connector 
and all bottom faces have a solid connector. This is easy to use in finite maps, as the map size is known at the start 
and thus, all top and bottom cells can first be assigned. For infinite maps, however, it becomes a lot more difficult. 
This falls out of the scope of this paper. 

ERROR STATES 

WFC can reach a contradiction while collapsing cells. A contradiction happens when a cell needs to get collapsed, but 
no possible states are possible because of the neighboring collapsed cells. For finite worlds, it is sufficient to restart 
the collapsing of the wave. For infinite worlds, backtracking would need to be implemented. 
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CASE STUDY 

1.  INTRODUCTION 

This chapter will give an overview of the entire implementation of the algorithm. It provides a step-by-step guide to 
reproduce this implementation of 2D and 3D Wave Function Collapse in Unity. The 2D tiles were made in Adobe 
Photoshop and the 3D tiles were made in Autodesk 3DS Max.  

Additional customizability options will also be added to the 3D algorithm and explained. The hypothesis is that these 
extra constraints will all increase the execution time substantially. This paper hypothesizes that, while not adjacency 
constraints will influence the execution time equally, the execution time will at least double, when using all these 
constraints together.  

2.  WAVE FUNCTION COLLAPSE GENERAL ALGORITHM  

We start WFC by generating a grid of a given size 
with empty cells. These cells hold all possible 
modules they can, meaning it is in a 
superposition. A module represents a possible 
state of a cell. This grid represents the “wave” 
that will get collapsed. We start the algorithm 
and thus start collapsing the wave. This algorithm 
loops over the following steps: 

1. Observation: Start by looking 
for the cell with the lowest 
entropy. During this search, 
add some randomness using 
Unity’s built-in random 
number generator when 
multiple cells with the same 
entropy are found. This assures 
we get a truly random cell in 
this case. Collapse the cell to a 
random module left in its 
possible modules. 

2. Propagation: Relay the info of 
the collapsed cell to its 
neighbors. Discard modules 
that can no longer fit and 
propagate this info to those 
neighboring cells. Repeat this until all 
cells that need to discard modules 
have done so. 

3. Search for the cell with the lowest entropy. Check if one has been found. 
a. Cell was found; repeat the loop from step 1. 
b. No cell was found; stop the loop as the wave has collapsed.   

Figure 11: Flowchart representation of WFC 
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3.  2D WAVE FUNCTION COLLAPSE 

To get WFC to work in a truly 2D environment (using sprites), a consistent way to check adjacency constraints is 
required. Therefore, edge color detection is often chosen [18] [9].  

3.1.  TILES 

For the input in 2D WFC, sprites are used. A common and consistent way to check adjacency for sprites is edge color 
detection.  Within Unity, it is very easy to get the color of a given pixel 
coordinate of a texture.  

Wang tiles are advised [9] to use as input when implementing the 
algorithm. A Wang tile is a square with zero to four colored edges.  If 
preferred each tile can be numbered to get a better overview of the 
generated map. The usage of Wang tiles when creating 2D WFC has 
multiple advantages: 

• Wang tiles are simple and easy to create. The time 
investment in creating them is minimal. 

• A set of 16 Wang tiles cover all possible states of a Wang 
tile. Thus, there is no need to use any kind of rotation or 
reflection on the tile. 

• This set can create huge output maps without breaking 
visual coherence if the algorithm works correctly. If the output looks wrong, that means there is an error in 
the algorithm. [24] [25] 

To get an idea of how the output would look using game tiles, simple road tiles can be used. These provide no explicit 
advantages or disadvantages but can just give an idea of how the generation of a 2D map with real game tile would 
look.  

 

Figure 13: Used road tiles. 

  

Figure 12: Used Wang tiles. 
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3.2.  WAVE AND CELL REPRESENTATION 

A cell in the wave is represented with the WFCCell2D class. This class contains a list of the 
possible modules (sprites) the cell can collapse into, a boolean that represents whether 
the cell has collapsed, and its collapsed state (which is null until it gets collapsed). The 
class also contains two public methods GetEntropy() and CollapseCell(). These 
methods are explained in later paragraphs. 

The wave itself is represented by a 2D array of size [x, y], where x and y are integers given 
by the user, of WFCCell2D objects. This array gets generated and filled with objects when 
the algorithm starts. We give each cell object a new List of sprite objects coming from the 
given tiles.  

 

3.3.  OBSERVATION STAGE 

The observation stage starts by looking for the cell with 
the lowest entropy. This is rather straightforward 
because the collapsed state is completely randomly 
chosen when collapsing the cell. The entropy of a cell is 
just the number of modules left in the list of possible 
modules.  

To find the cell with the lowest entropy in the wave, the 
GetLowestEntropyCell() function is used.  This 
function loops over all the cells in the wave and looks 
for the one with the lowest entropy. Collapsed cells are 
ignored and there is randomness introduced when 
multiple cells would have the same entropy. If no cells 
are found, this function returns a vector with negative 
indices. 

Once the cell with the lowest entropy is found, it can 
get collapsed. This is done by generating a random 
number in the range of 0 and the number of modules 
left -1. Afterward, the sprite at this index is fetched and 
saved in the collapsed Tile object. A Sprite Renderer 
component is added to the game object to render the 
collapsed tile. After this, all that is left to be done is 
setting the collapsed boolean to true and emptying the 
list of the possible modules. This marks the end of the 
observation stage. 

 

 

Figure 15: Flowchart representing the GetLowestEntropyCell 
function. 

Figure 14: WFCCell2D Class 
diagram 
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3.4.  PROPAGATION STAGE 

In the propagation stage, a stack of cells is created to keep track of all cells that have been changed due to the 
collapsing of the original cell. To start this stage of the algorithm, the cell that collapsed in the observation stage is 
added to the stack.  

The algorithm then starts popping the cells from the stack. Each popped cell gets processed.  

1. Check if the cell has already collapsed. If so, ignore this cell as a collapsed cell is not in a superposition 
anymore. 

2. Get the neighbors of this cell and start looping over them. 
3. For each neighbor: 

a. Compare all the possible tiles from both cells using adjacency constraints. In this 
implementation edge color detection is used to check whether tiles can fit together. 

b. Remove impossible states from the list of possible tiles in the neighbor. 
c. If at least 1 possible tile was removed from this neighbor, add it to the stack. 

4. Check if the stack is not empty.  
a. If the stack is not empty, pop the next cell from the stack and restart this loop. 
b. If the stack is empty, terminate the function and restart the WFC loop. 

 

Figure 16: Flowchart representing the propagation stage. 
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3.5.  RESULT 

With both the observation and propagation stages correctly implemented, a 2D map can now be generated. The 
image (Figure 17: WFC 2D result) below shows an example of 2 generated maps using Wang tiles and 2 generated 
maps using the road tiles seen before. 

 

Figure 17: WFC 2D result 
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4.  3D WAVE FUNCTION COLLAPSE 

Extending the Wave function collapse to the third dimension requires the algorithm to get extended as well. While 
minimal changes are required to the algorithm loop itself, the adjacency constraints pose the biggest challenge.  

1.  INPUT 

For 3D WFC, 3D models are used as input. Wave function collapse in 3D has two major pros: 

1. You can easily control the ambiance 
and art style of the generated level 
depending on the input tiles. 

2. The tiles can have any shape possible 
and be used in the 3D algorithm with 
minimal change to the structure of the 
algorithm. Other examples include 
hexagonal tiles, and triangle tiles [26]. 

Most implementations of WFC in 3D use box-shaped 
modules as input, as these are the most basic and easy 
to implement. It is important to assure that the bounding box of all tiles is the same size. For this implementation, 
square tiles are used, with a bounding box of 2m x 2m x 2m. With these parameters, tiles can be created. These tiles 
should all be saved in 1 prefab, but each tile should be a child object of the main prefab (Figure 19: Used tile set ). 
There should also be an empty tile that represents air and a solid tile for obstructed cells. This helps prevent 
unwanted edge cases and artifacts [23]. 

 

Figure 19: Used tile set prefab. 

  

Figure 18: Example of a hexagonal grid 
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2.  SETTING UP ADJACENCY CONSTRAINTS 

While adjacency constraints were straightforward in 2D WFC, extending to 3D 
means completely changing the way they work. Instead of edge color detection, 
face edge alignment is the main adjacency constraint used. As the name suggests, 
connected faces on neighboring cells will have their edges compared, to see how 
they fit together. It proves very useful to set up an edge atlas while setting up the 
adjacency constraint (Figure 20: Example edge atlas). 

An easy way to represent the edge of a face is by adding a socket to each tile face 
(6 in total). A socket contains this information: 

• An integer used as an identifier for the edge itself. 
• For horizontal faces: 

o A boolean representing a symmetric face.  
o A boolean representing a flipped face. 

• For vertical faces: 
o An integer representing the rotation index (0-3) 
o A boolean representing whether the face is rotationally invariant. 

 

To assign the sockets on all the tiles, we follow this flowchart (Figure 21: Flowchart on how to assign ): 

1. Loop over all tiles. 
2. For each face on the current tile. 

a. Check if this face already exists. 
i. If so, copy the data and move to the next face. 

b. Give it the next possible socket ID. 
c. Check whether it’s a vertical or horizontal face. 

i. Horizontal: Is the face symmetrical? 
1. Yes: Set symmetric boolean to true. 
2. No:  Set flipped boolean to true if this face is the flipped version of socket Id. 

ii. Vertical: Does rotating this face change the edge alignment? 
1. Yes: Set invariant boolean to true. 
2. No: Set the correct rotation index. 

Figure 20: Example edge atlas 
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Figure 21: Flowchart on how to assign sockets. 
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Let’s take the tile below as an example (Figure 22: Example tile with correctly assigned sockets.). To be clear, within 
Unity the red arrow represents the X-axis, the green arrow represents the Y-axis, and the blue arrow represents the 
Z-axis.  

 

Figure 22: Example tile with correctly assigned sockets. 

When assigning face sockets, we first need to look at the edge atlas (Figure 20: Example edge atlas) and look whether 
an identical edge is already in it, if it isn’t, we add it. 

For the face on the positive X- axis, we see that the edge is a straight horizontal line on the lower part of the face. 
Within the edge atlas, the edge has been found with an id of “1” and since this edge face is symmetric, the “s” 
identifier is added. This process is identical to the negative X-axis. 

To assign the positive Z-axis, the edge is again analyzed. The edge in this case is a horizontal line with a dent in it. 
When searching it up in the edge atlas, it is apparent that it is already in there, so the correct socket id is assigned, 
being 2. Since the edge is also symmetric, the “s” identifier is again added. Once again this is added for the negative 
Z-axis. 

When assigning the positive Y-axis, we see that it has no edges on the face boundary. This means that it must be 
connected to either an air tile or a solid tile. Since the top of the mesh should be visible when standing next to it, the 
air socket id, which is 0, is assigned. For the negative Y-axis, the process is the same, except that the bottom of the 
tile should never be visible, meaning it must connect to a solid block and hence get the socket id of 9. Both Y faces 
are invariant as rotating them would not change any possible adjacencies. 

This forms the basis adjacency constraint system for the 3D Wave Function algorithm. Many other adjacency 
constraints can be added on top of this basis constraint. Some examples will be given and used later.  
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3.  HOW DO WE REPRESENT THE INPUT TILESET IN UNITY? 

Before we can represent the entire tile set, a single tile needs to be represented. This is where modules come in. A 
module contains the name of the tile, an object holding all the tile data (explained in the next heading), and a 
reference to the tile prefab. There should be at least as many modules as used tiles when generating a 3D map. 

  

Figure 23: Module and module collection class diagrams 

This implementation uses a scriptable object as the input for 3D WFC. This scriptable object is called Module 
collection 3D. The module collection contains a reference to a prefab containing all the tiles in separate objects and 
a list containing all the models it generates. Its most important methods are the CreateModules() and 
GenerateRotationVariants() methods. 

The generate modules function transforms the tile prefab into a list of modules. First, it starts by looping over all the 
child transforms in the prefab and discarding the inactive transforms. This is an easy way to disable/enable prefabs 
from being used in map generation. Secondly, both vertical faces are checked. If they are both rotationally invariant, 
a module with the name of the mesh + “_i” is added. This identifier string indicates that this prefab is completely 
invariant. If one or both face(s) are rotationally variant, four modules are generated. For this the generate rotation 
variants function is used. Here four modules are generated, one for each rotation, and the sockets are swapped 
according to the current rotation. The name for each of these modules is just the mesh name plus “_x”, where x is 
the current rotation index. Finally, the generated module(s) are added to the list of modules. If the last child element 
has been processed, the function is finished, and the modules are ready to be used in the algorithm. 
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4.  CONVERTING FROM 2D TO 3D  

As mentioned before, minimal changes are needed to the overall algorithm to extend WFC to 3D. Most of the changes 
just involve adding the third dimension to objects (e.g., generated map and WFC cell).  

Observation stage 

While getting the lowest entropy cell and choosing which module to collapse a cell to remain the same, the 
instantiating of the chosen module differs slightly. Instead of instantiating a sprite, the prefab in the chosen module 
is instantiated as a child object to the current cell. This assures that the 3D model is spawned at the correct location. 
We then locally rotate the 3D model around the Y-axis by x * 90 degrees, where x is the rotation index of the negative 
Y-face, so the 3D model aligns with the neighbors [11]. 

Propagation stage 

The entire main loop of the propagation stays the same. The only changes that are made are in the comparison of 
neighboring cells. The parts that do the color detection can be entirely discarded and replaced with the new 
adjacency constraint, which is making sure aligned sockets can fit. 

For sockets to fit together, multiple criteria must be met: 

• The socket IDs must be the same on both sockets. 
• For horizontal sockets both sockets should be symmetrical, or one socket should be flipped and the other 

not. 
• For vertical sockets both sockets should either be rotationally invariant or both sockets should have the 

same rotation index. 

To serve as an example, let’s have a look at these two modules 
(Figure 24: Modules that fit together without rotating.). These 
can fit together horizontally.  This means that a normal 2 socket 
is needed to fit it.  

These modules (Figure 25: Modules that do not fit together 
when placed next to each other without rotation.) however 
cannot fit together as they have different socket IDs, 2 and 1. 

 

 

 

 

 

 

   

Figure 24: Modules that fit together without rotating. 

Figure 25: Modules that do not fit together 
when placed next to each other without 
rotation. 
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5.  RESULT 

Once all these changes have been implemented, the generation of a 3D map should now work. Running the generator 
with the simple tile (Figure 19: Used tile set ) set gets the results seen in the image below.  

 

Figure 26: Example of 3D output without additional constraints 

As you can see the 3D algorithm generates a nice-looking terrain. This basic implementation can generate many kinds 
of layouts basic on the simple set of 9 tiles (excluding the empty and solid tiles). If more customizability or different 
kinds of results would be wanted, extra tiles could be added, or additional adjacency constraints could be added. 
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5.  WAYS TO FURTHER CONTROL THE RESULT 

As mentioned before, the WFC algorithm relies on the given adjacency constraints to create a coherent and usable 
level. Therefore, rather than just creating extra tiles to customize the level generator; it is also advisable to add extra 
adjacency constraints. In this chapter, additional constraints will be added to transform the output from giving a 
more mountain-like result, to an island-looking result. 

 

Figure 27: 3D WFC result before and after adding additional constraints. 

5.1.  SOLID FLOOR 

One of the first constraints added is a solid floor, which was 
inspired by Kobe De Vrijsen [27]. For this, all cells with y 
index 0 are collapsed to the solid tile before the wave 
collapse is initiated. This assured that all cells with y index 1 
have a solid bottom face. This prevents the possibility of 
holes in the result and gives the below result. Note: This 
outcome was also possible without this constraint, but now 
it is guaranteed instead of being based on chance. 

 

 

 

 

 

 

 

  

Figure 28: Example of a hole in a generated map 

Figure 29: Result after using a solid floor. 
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5.2.  WEIGHTED ENTROPY AND CHOICE 

It often could prove useful to be able to provide how often we want certain tiles to appear compared to others. For 
example, imagine if a certain game required low meadows with a hint of verticality for its first level, and in contrast, 
it needed a level with a lot of verticality and big mountains. In this scenario, one approach could be to create two 
different tile sets, one for each level. According to Boris The Brave [22], This can be achieved by using weighted 
entropy.  Sandhu et al. [16] add that while weighted entropy does achieve some control, it does not fully represent 
the weight of a tile. Instead, they recommend using weighted choice. This implementation will implement and use 
both. 

Weighted choice can get added rather easily. Each tile gets an integer number to represent its weight. Then when 
the cell is getting collapsed, we take this weight into account, to determine its final state. Taking the weight into 
account means these steps [28]: 

1. Calculate the total weight of the 
remaining tiles. 

2. Get a random number in the range [1, 
total weight] 

3. Loop over all the modules 
a. If the random number is smaller 

or equal to the module’s weight 
i. Collapse the cell to this 

module and exit the 
function. 

b. Subtract the weight of this tile 
from the random number and 
continue the loop. 

Once this has been implemented and all the tiles have 
been assigned their correct weight, the desired output 
can be generated. 

Weighted entropy is also not that difficult to add. We change the way entropy is calculated by using this formula 
[22]: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  −Σ𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖) 

This formula loops over all the modules left in the current cell and multiplies the weight of the module with the 
natural logarithm of that weight. These are then all summed and inverted. These are very heavy calculations, so it is 
important to store this value, to not recalculate it each time the entropy is needed. The entropy then of course needs 
to be recalculated each time the remaining module collection is changed. 

Note: finding the perfect balance between tile weights can be very challenging. 
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Figure 30: Example generated map with rock tiles with high weights 

5.3.  MATERIAL ADJACENCY 
When generating a level, having multiple types of material can make the level more diverse and interesting. However, 
creating additional tiles or each material takes up a lot of time. Another approach would be to re-use tiles that are 
already available and just assign them a different material and have a way to tell the algorithm when certain materials 
can align. This forms the basis of material adjacency. 

The image below showcases all the tiles used for material adjacency. There are grass tiles, sand tiles, and water tiles. 
The sand tiles are just recoloring of grass tiles and the water tiles are unique. 

 

Figure 31: Tiles with the new materials 

To start generating with material adjacency, changes must be made to our tile data and the propagation stage.  

For the tile data, we first add a field representing the tile’s material called compatible materials. This material 
represents the material seen on the bottom face, should multiple materials be present on one tile. Then, we also add 
a list of materials to each horizontal face. These are then filled with all the materials that can fit that face. 

For the propagation stage, we just add a check when comparing the faces of the current cell with the neighbor’s 
faces. If the neighbor’s compatible materials contain the current cell face’s material or vice versa, they are 
compatible. 

With just these small changes, material adjacency is added, and an inherent level can be regenerated into a level 
with coherent diversity. 
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Figure 32: Before  and after material adjacency 

 

 

 

5.4.  EXCLUDING NEIGHBORS 

See the image below (Figure 33: Sample output of plain 3D WFC with notes). In the image, many walls stick together. 
Sometimes 4 outer corners are placed next to each other, creating a pillar structure. For the direction this 
implementation is headed, these are not wanted. In general, there are too many walls following each other vertically, 
so it would also be preferred if walls don’t follow each other vertically if there are next to one another. 

 

Figure 33: Sample output of plain 3D WFC with notes 

These goals can be achieved by adding excluded neighbors adjacency [29]. This is done by adding a list of excluded 
neighbors to each face of a tile. Then, in the propagation stage, we just check whether one face contains the other 
in its excluded list. If it does, we ignore this tile and continue to the next face. Afterward, it’s only a matter of assigning 
excluded neighbors to the tiles to get a result that is preferred. The transformation of the map generation from this 
adjacency constraint can be seen below. (Figure 34: Before and after excluded ) 
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Figure 34: Before and after excluded neighbors. 
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EXPERIMENTS & RESULTS 

In this paper, the impact of using additional adjacency constraints on the execution time is analyzed. We measured 
the execution time in milliseconds. For all experiments, the execution time is defined as the initialization of the wave, 
the execution of the wave, and any cleanup of algorithm objects. To avoid any hardware interference or 
dependencies, all the tests were run on the same computer, while it was only running said tests. No other programs 
were being used during tests. 

Each of the constraints was put in a different test case for a total of six cases. Only a maximum of 1 extra constraint 
was used per case, except for case six. 

1. No extra constraints are used. 
2. Assuring solid floor. 
3. Enabled material adjacency. 
4. Enabled weighted choice and entropy. 
5. Enabled excluded neighbors. 
6. Enabled all extra constraints. 

Each test case was run twelve times. The minimal and maximal measured time from each case was discarded. This 
entire experiment was run for three different map sizes: 5.000 cells,  25.000 cells, and 45.500 cells. Running these 
three experiments gave the results discussed in the next paragraphs of this chapter. 

THE IMPACT OF ALL EXTRA CONSTRAINTS 

First, it is useful to compare the execution time of 3D Wave Function Collapse without extra adjacency constraints 
and with extra adjacency constraints. This indicates the overall added load of adjacency constraints on the algorithm. 
Running these tests gives us the following graph: 

 

Figure 35: Clustered column graph comparing execution time for different map sizes with and without all the extra constraints. 

From this graph, it is obvious that a load of extra adjacency constraints cannot at all be neglected when implementing 
them. For a map of 5.000 cells, the execution time increases by 471%. While there is still a big increase for a map of 
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45.500 cells, it is substantially less. When generating a large map, the increase is (only) 160%. For this reason, this 
increase was also tested for other map sizes. When running the algorithm for maps of other sizes, we get this chart:  

 

Figure 36: Scatter chart representing the decrease in percentual execution time increase over larger map sizes. 

As you can see, there is a downward trend for the percentual increase regarding increasing map sizes. This indicates 
that the relative load added from adjacency constraints falls off over larger maps. This opens the possibility to look 
at adjacency constraints as a way of optimizing  3D Wave Function Collapse. It may also be possible that when 
implementing additional constraints, it is imperative to have a target map size in mind.  
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THE IMPACT OF INDIVIDUAL CONSTRAINTS 

The impact of each individual adjacency constraint will also individually be tested. As seen before they add a 
substantial load to the algorithm, so it is very useful to evaluate each constraint separately. 

1.  SOLID FLOOR 

 

 

Figure 37: Clustered column graph comparing execution time for different map sizes with and without the solid floor constraint enabled. 

Testing the solid floor constraint gives rather interesting results. While it increases the execution time for a map of 
5.000 cells, it speeds up the map generation for larger maps. These results support the possibility of using adjacency 
constraints as a way of optimizing generation time.  
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2.  MATERIAL ADJACENCY 

 

 

Figure 38: Clustered column graph comparing execution time for different map sizes with and without material adjacency enabled. 

When using material adjacency, execution is increased. This was to be suspected as material adjacency adds two 
condition checks for every cell face comparison. The percentage at which execution time is increased also seems to 
decrease as map sizes increases. For maps of 5.000 cells, 25.000 cells, and 45.500 cells, there are percentual increases 
in execution times of 78%, 33%, and 15% respectively. This also indicates that material adjacency becomes more 
efficient as larger maps are generated. This could be because possible modules get discarded earlier than they would 
without material adjacency. 
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3.  WEIGHTED ENTROPY AND CHOICE 

 

 

Figure 39: Clustered column graph comparing execution time for different map sizes with and without weighted entropy and choice enabled. 

While weighted entropy and choice involve some heavy calculations, the impact on execution time seems almost 
negligible. It is only for a map of 5.000 cells that the execution time is increased, being by 0,77%. For a map of 
25.000 cells and a map of 45.500 cells, there are decreases of 2,45% and 4,72% respectively. These decreases might 
be explained that since weighted choice and entropy promote some tiles over others, tiles that have small weights 
are discarded earlier on in the collapsing of the wave.  

  

6177,9
60749,8

166754,6
6225,5 59262,6

158884,6

34525,8

198119,7

396556

0

100.000

200.000

300.000

400.000

500.000

5.000 cells 25.000 cells 45.500 cells

Ex
ec

ut
io

n 
tim

e 
(m

s)

Map size

Execution time for generating different map sizes 
compared with weights

None Weights All constraints



36 
 

4.  EXCLUDING NEIGHBORS 

 

Figure 40: Clustered column graph comparing execution time for different map sizes with and without material adjacency enabled. 

As the other constraints have little to no increase in execution time or even decrease, it is only fair to assume that 
excluding neighbors is the big contributor to the increase from no extra constraints to all extra constraints. This 
statement is most definitely supported by the tests. For the test of a 5.000 cell map, there is an increase of 270%, 
which makes it by large the biggest bottleneck on performance. This bottleneck decreases for larger maps, where it 
becomes an increase of 130% and 86% for maps of 25.000 and 45.500 cells respectively.  
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TIME COMPLEXITY 

To measure the time complexity, the algorithm is run 5 times for a consistent map size. In this case the map size for 
each case was 45.000 cells (or 70 x 10 x 65 cells). The 5 different cases were: 

1. 27 input modules. 
2. 50 input modules. 
3. 75 input modules. 
4. 101 input modules. 
5. 123 input modules. 

Each case was run twelve times, where the minimum and maximum values were discarded for correctness. From 
the ten remaining values the average was calculated and then graphed. This resulted in the graph below (Figure 41: 
Time complexity for a map of 45.500 cells.). 

 

Figure 41: Time complexity for a map of 45.500 cells. 

From this data it can be derived that the Wave Function Collapse algorithm probably has an average case time 
complexity of nlog(n). Do note that this data was empirically gathered and if the algorithm was properly processed, 
the concluded time complexity could differ. 

This time complexity once again reinforces the need for optimizations. This algorithm get much heavier when 
adding additional modules, adjacency constraints or increasing desired map size. 
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DISCUSSION 

During this research, 2D Wave function collapse was implemented and extended to 3D Wave function collapse. 
Implementing the 2D algorithm was rather straightforward. However, as Chloe Sun mentioned [9], it is very useful to 
use Wang edge tiles as a tile set when implementing the algorithm. The algorithm itself can be properly implemented 
if understood, for this, it was very useful to first schedule the algorithm in a flowchart and then translate it into code. 

This 2D implementation focused on edge color detection as the main adjacency constraint. It is however equally 
possible to add other types of constraints, to further customize it. This fell out of scope for this paper but is worth 
mentioning, nevertheless. Cheng D. et al [30] and Sandhu et al. [16] gave some great examples of the possibility of 
2D constraints. 

Extending the 2D algorithm to 3D generally was less complicated than expected. The biggest challenge came in 
finding a correct way to represent tiles and their adjacency constraints in 3D. The solution for this was based on the 
implementations of Marian42 [23] and Martin Donald [11]. They both provided a solid system for representing tiles 
and using edge alignment as the main adjacency constraint. There however is one aspect that is different in this 
implementation, the list of possible modules for a cell. While in their implementations each face has its list of possible 
states for the cell, in this implementation there is only one list for the entire cell. There do not seem to be any 
repercussions from doing this. 

When generating the list of modules, it is rather easy to generate rotational variants (if needed), as Martin D. 
mentioned [11]. This eliminates some manual labor of having to export each rotated variant of a tile mesh and assign 
all the adjacency constraint info. 

While implementing 3D WFC, one big mistake was made. At first, a simple tile set, which did not support verticality 
well, was used. This was a crucial mistake that resulted in wasted time and unnecessary debugging. If the tile set is 
not expansive enough, the algorithm will often fail.  

AbeTusk [31] mentioned that one of the best things one can do when optimizing 3D WFC is to look for possible 
optimizations. This is because the algorithm is very heavy and takes a long time to collapse a wave. This statement is 
fully supported by this implementation. While the execution time for plain 3D WFC and small maps is (relatively) low, 
adding additional constraints and increasing map size quickly increases.  

As seen by Sandhu et al. [16] and Boris the Brave, one of the big strengths of WFC comes in the form of adjacency 
constraints. The four constraints used in this implementation are each a good example of how even just two or three 
extra adjacency constraints can completely change a result and give more control to the user. It can become very 
chaotic, however, by combining these constraints and coding them. This is another takeaway from this paper; When 
implementing additional adjacency constraints, structure them well in code and, if possible, try to set up a modular 
system for adding and removing adjacency constraints. It is also important to keep performance in mind. As seen 
with the excluded neighbor constraint, one single constraint can triple the execution time. Added customizability 
also comes with additional time necessities, best example by weighted entropy and weighted choice. If the weights 
are not balanced well, the level can become very bland or repetitive. 

As mentioned before, Boris the Brave [22] uses weighted entropy to represent tile weights, while Sandhu et al. [16] 
advocate using weighted choice. This implementation found that using a combination of both gives the most control 
over the result. This might take away some of the charms of having the levels be generated more randomly, but if 
desired can be a powerful tool.  
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This paper gives clear instructions on how to implement 2D and 3D Wave Function Collapse, opening the possibility 
for game programmers to create a scalable tool, that could be used across different projects without having to be 
adapted (much). Given that some adjacency constraints seem to have decreased performance time, even for larger 
maps, the idea of using adjacency constraints to optimize WFC is possible. It does remain apparent that every possible 
optimization goes a long way for this algorithm as it is very heavy and, in most cases, unrealistic to use at runtime. 

CONCLUSION & FUTURE WORK 

CONCLUSIONS 

When talking about procedural content generation in video games, there are many options available. Wave 
Function Collapse offers a way to procedurally generate 2D and 3D levels based on input tiles. The biggest 
challenge in converting 2D Wave Function Collapse to 3D is representing the input and adjacency constraints in a 
clear and manageable system. This can be done by using modules, that contains all necessary data for the 
adjacency constraint system. Ideally, these modules are generated from a prefab containing all the separate tiles. 
This collection of modules can then generate rotational variants if desired, eliminating the manual labor of having 
to create and assign each rotational variant by hand. Other than this, the changes to the observation and 
propagation are minimal.  

Additional adjacency constraints can be very powerful tools to tailor generated maps to desired results but can 
come at a heavy price. They can increase the execution time of the algorithm by very substantial amounts and can 
increase the failure rate as well. They can also make code very chaotic and difficult to manage, if not structured 
nicely. Balancing (different) constraints can also prove to be a challenge and, if done incorrectly, can make 
generated maps bland or repetitive. 

FUTURE WORK 

Adjacency constraints are not equally slowing down performance and some can even improve it. This indicates that 
there is a possibility to use additional adjacency constraints as ways to improve execution time. If this is indeed 
possible, Wave Function Collapse could become more mainstream and often used.  

3D WFC could benefit from an automatic way to assign sockets for modules. The process of doing this by hand is 
very tedious and prone to error. Errors due to wrong constraint assignments are very annoying and difficult to find. 
For these reasons finding a way to have an algorithm do this, would go a long way toward maintaining larger tile 
sets. 

A big part of creating the desired result with 3D WFC is iterating different adjacency constraint settings and 
combinations. For this, a modular system to add, handle or change adjacency constraints could be very powerful in 
keeping one implementation untouched for multiple projects and creating a kind of sandbox to experiment with. 
This could also help lessen the clutter of having all the different constraints coded directly into the algorithm. 

There is always the possibility of contradictions with WFC. As generated map becomes larger, the chance of having 
the algorithm fail increases. For this, it could be very useful to have an efficient way of handling these. For most 
cases, it could be sufficient to just try to regenerate a new map. Finding a way to handle contradictions, however, 
could open many new use cases of WFC in gaming and procedural content generation. 

Finally, as mentioned before, as many optimizations must be found and used as possible. Execution time is very 
slow for WFC, even compared to other map generation algorithms. If it is possible to lessen execution time 
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significantly, the possibility of using WFC to create an endless world at runtime opens (as demonstrated by 
Marian42 [29]). For this to work, however, there also needs to be a consistent and efficient way to handle 
contradictions.  
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